Planning Fiber Optic Networks

Author Bob Chomycz McGraw-Hill ISBN 978-0-07-149919-4

Please note the following corrections for errors found in this printing. The corrections are shown in **green bold**.

Page 27
less than 1 mW. Table 2.1 shows a few common milliwatt to dBm conversion.

Power in mW	Power in dBm
31.6	15
10	10
7	8.5
5	7
2	3
1	0
0.5	-3
0.32	-5
0.1	-10
0.01	-20
.0032	-25

Table 2.1: Common milliwatt to decibel conversions

Page 265

For example, if a 100 km fiber link has an effective group refractive index is n_g = 1.4682 what is the signal latency in the fiber?

$$t_f = \begin{array}{c} 100 \times 10^3 \times 1.4682 \\ ------2.9979 \times 10^8 \end{array}$$

$$t_f = 4.8974 \times 10^{-4}$$

The fiber's latency or time required for the signal to propagate 100 km in this fiber link is **0.489744** ms.

Page 266

Total delay is calculated as follows:

$$t_T = 4.8974 \times 10^{-4} + 2 \times 98.282 \times 10^{-6} + 2 \times 7 \times 10^{-3}$$

$$t_T = 14.686 \times 10^{-3}$$

The calculated channel latency is **14.686** ms. The accuracy of this latency depends on the accuracy of the measured fiber distance,

Please accept my apologizes for these typos. If you should find any other typos, feel free to email me at bchomycz@telecomengineering.com

Bob Chomycz